

Shi-lin Chen

Professor, Chung Yuan Christian University Professor Emeritus, National Tsing Hua University

Source for pp.3-17:

- J.A. Momoh, ELECTRIC POWER DISTRIBUTION, AUTOMATION, PROTECTION, and CONTROL, CRC Press, 2008.
- **Source for pp.18-31:**

J. Northcote-Green and R. Wilson, CONTROL and AUTOMATION of ELECTRICAL POWER DISTRIBUTION SYSTEMS, CRC Press, 2007.

Distribution Automation and Control Functions

Trouble Calls

Distribution Management Systems

DMS Function

Distribution Management Systems

TABLE 8.1

Distribution Automation Functions

Substation Automation Functions	Feeder Automation Functions	Customer Interface Automation Functions
Data acquisition from:	Data acquisition from:	Automated meter
· Circuit breakers	· Line reclosers	reading
· Load tap changers	 Voltage regulators 	Remote
· Capacitor banks	· Capacitor banks	reprogramming of
Transformers	· Sectionalizers	time-of-use (TOU)
Supervisory control of:	• Line switches	meters
· Circuit breakers	· Fault indicators	Remote service
· Load tap changers	Supervisory control of:	connect/disconnect
Fault location	· Line reclosers	Automated customer
Fault isolation	 Voltage regulators 	claims analysis
Service restoration	· Capacitor banks	,
Substation reactive power	· Sectionalizers	
control	• Line switches	
	Fault location	
	Fault isolation	
	Service restoration	
	Feeder reconfiguration	
	Feeder reactive power control	

Amplitude Modulation(AM)

Frequency Modulation(FM)

FIGURE 9.4 Frequency modulation (FM) waveform.

Frequency-Shift Keying(FSK)

FIGURE 9.5 Frequency-shift-keying waveform.

Phase-Shift Keying(PSK)

LAN Bus Topology

FIGURE 9.8 LAN-ring bus topology.

LAN-star Topology

Metropolitan Area Network(MAN)

Simple frame-relay network

Frame-relay frame

FIGURE 9.13 Frame-relay frame.

DA Frame-relay

FIGURE 9.14

Typical use of a frame relay in distribution automation.

OSI

FIGURE 9.15

OSI model layers communicating with other layers.

FIGURE 7.4 Distribution automation communication technology options.

FIGURE 7.6 Point-to-point communication.

FIGURE 7.14 PLC system with standard network management components.

MODBUS

• Transferring control signals between programmable logic controllers

DNP3.0

- Fragmented messages
- Multiple Application Layer messages may be built and transmitted sequentially
- A message may be either a single-fragment message or multifragment message

- Unsolicited response
- Error detection
- Duplicate frame detection
- Handles states of the media
- Synchronization across the media

	Hea	der	Data
IGURE 7.44 DNP	frame.		
Sync Length Link contr	ol Destination address	Source ad	dress CRC
		with the states	
IGURE 7.45 DNP header so	egment.		
Block 1	egment.	Blo	ck n

FIGURE 7.46 DNP data segment.

- Frame size
- Data link control information
- Help the remote receivers determine where the frame begins
- To coordinate their activities
- "All-call-message" in which the frame should be processed by all devices
- Cyclic redundancy check tasks
- A pair of CRC octets are included ,transmission errors can be detected

IEC 60870-5-101

- Enhanced performance architecture
- Perform their local application tasks called application processes
- Communication process between station A and station B

FIGURE 7.50 IEC layer architecture.

- The application data pass down through all layers
- All control data are dropped until the original application data are received
- Application service data unit(ASDU)

OA = Information object address (1, 2 or 3 data octets). IE = Set of information elements. TT = Time tag information object.

• With no idle line or gaps between asynchronous

characters

FIGURE 7.51 IEC messaging structure.

- LPCI=S+L+L+S+C+A+CS+E
- S=Start character with a fixed defined bit pattern, L=Length character, C=The link control character, A=The link address field, CS=The check sum character, and E=End character with a fixed defined bit pattern

T = Type identification (1 data octet).

- Q = Variable structure qualifier (1 data octet). Indicates the number of information objects or information elements.
- C = Cause of transmission (1 or 2 data octets). Causes include periodic/cyclic, spontaneous, request/requested, activation, etc.
- CA = Common address (1 or 2 data octets). Distinguishes the station address/station sector address.

FIGURE 7.52 IEC 60870-5-101, application service data units structure.

OA = Information object address (1, 2 or 3 data octets).IE = Set of information elements.TT = Time tag information object.

UCA 2.0, IEC 61850

- Manufacturing Message Specification(MMS)
- Open System Interconnection reference model, and seven layers integrate the communication protocol
- Application Layer standard ISO/IEC 9506
- These object models have named variables instead of point lists.
- When the objects are accessed by MMS, common data formats and variables are associated to the object model

- Two main levels of field device object models, the basic
- A switch control, and the specialized
- Breaker control or breaker reclose control
- The object model components are
 - Configuration parameters: Values that determine the setup of the device and are not expected to change often

- Settings: Values that determine the operation of the device and can change often
- Operation: Values that represent the actual output decisions or commands of the model to perform its functions.
- Status: Represents the indication or values directly concerned with the functions of the device
- Associated parameters