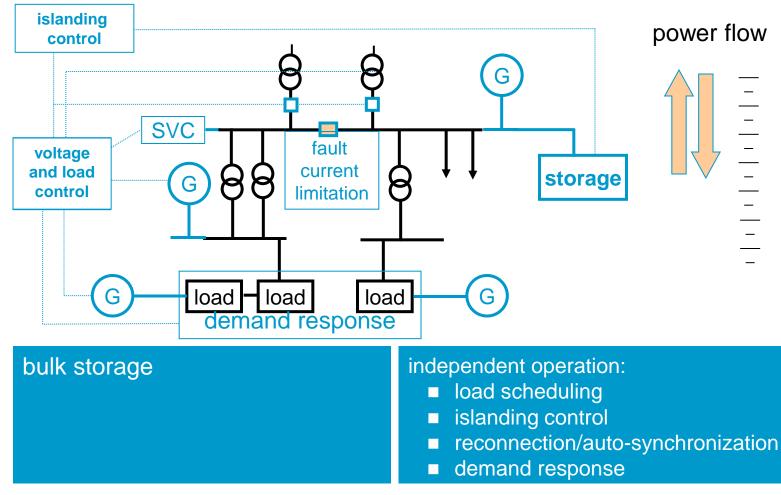
Development of Smart Grid in Taiwan

Frank, Faa-Jeng Lin

Chair, National Energy Project – Smart Grid and AMI Division, National Science Council Chair Professor, Dept. E. E. National Central University

linfj@ee.ncu.edu.tw



Outline

- Master Plan of Smart Grid in Taiwan
- Smart Grid Roadmap of Taipower
- National Energy Project Smart Grid and AMI, National Science Council
- Taiwan Smart Grid Industrial
 Association

The Evolving Electrical Network

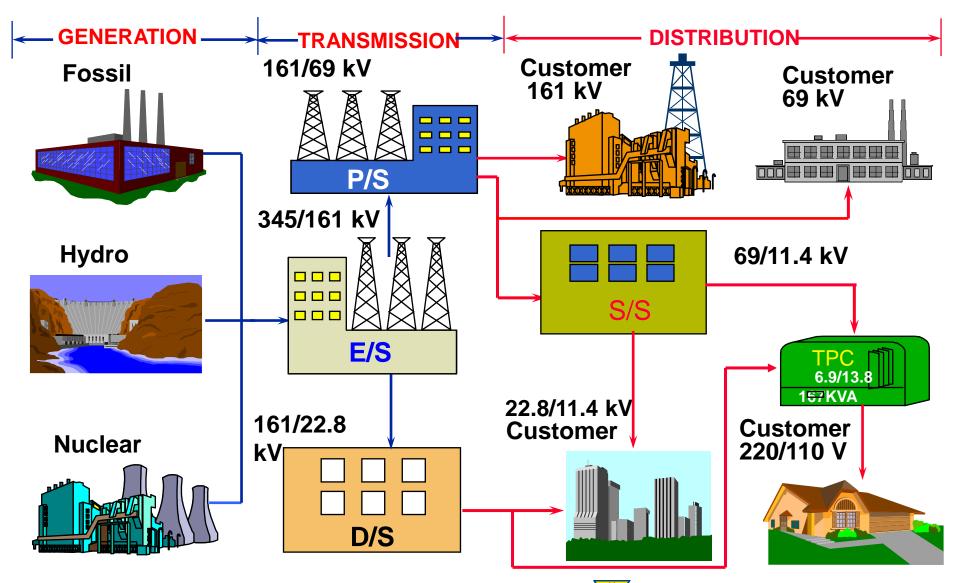

Source: Ofgem, UK

3

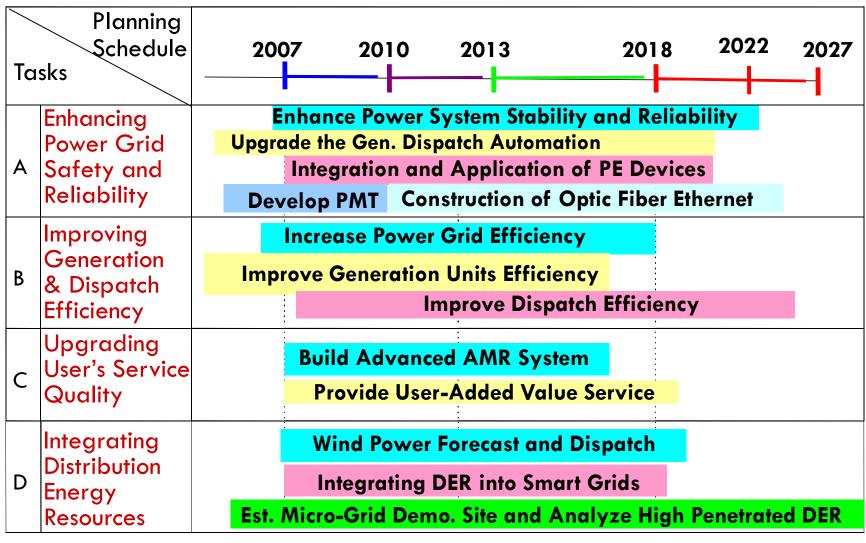
Advantages of Smart Grid

- Improve the overall efficiency for user (by ICT, AMI)
- Improve the proportion of distributed power or renewable energy to total generating capacity (by microgrid and distribution automation)
- Increase the flexibility of supply (by distribution automation)
- Reduce the transmission and distribution losses
- Improve power system stability and power quality (by self-healing)
- Reduce the peak load to reduce the spinning reserves (by AMI, demand response and time of use)
- Improve energy security
- Promote the development of information and communication industry

Master Plan of Smart Grid in Taiwan (2011~2030)

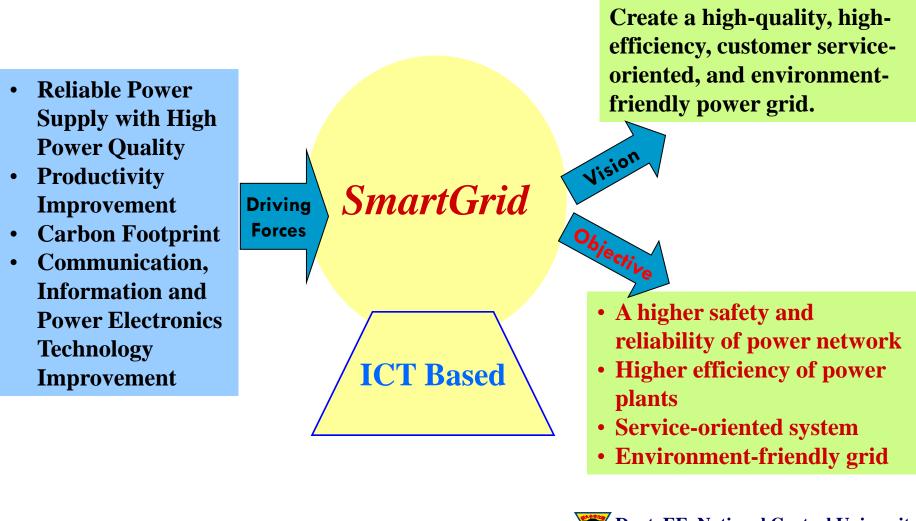


Introduction of Taiwan power system


ltem	O Nuclear	T hermal	△ Hydro	Image: Original windPower	次SolarEnergy	Total	Taiwan Power System 1st Nuclear 1272MW 2010 Installed Capacity : 40,912.4MW 2000MW Linkou 900MW Hsiehho 2000MW (Linkou Rebuild 2400MW Under Implement) Shenao Rebuild 1600MW (Under Implement) Tatan 4384MW Lungmen Nuclear 1070MW Kuokuang 480MW Lungmen Nuclear 1070MW
Installed Capacity (MW)	5,144	30,717	4,579	471	1	40,912	Tunghsiao 1806MW Tunghsiao 1806MW Cholan (Shihin) Hydro Maan Hydro Maan Hydro
%	12.6	75.1	11.2	1.1	0.0	100	Taichung 5780MW Star Energy 490MW Starkuck 490 MW Chanagong 1600MW
Up to year 2010: •Peak Load: 33 GW •Customers: 12.6 million •Total Generated Electricity (+IPP): 207.4 billion KWh •Sale Electricity: 193.3 billion KWh							(Under Implement) Takuari Wanta Hydro 5.7kW Penghul Mailao 1800MW Wanti Hydro 49.6MW Wanti Hydro 49.6MW Penghul Mailao 1800MW Wanti Hydro 49.6MW Wanti Hydro 49.6MW Penghul(P/S) Chiahui 6704W Takuari 2 1000MW Penghul(P/S) Sun Ba 980MW Takuari 2 1000MW Takuari 2 1000MW Hsinta 4326MW Inger Power plants Thermal Power Plants Hsinta 4326MW Talin 2400MW Extra High Voltage Substa Margo 1118MW Talin 2400MW Primary Substation 345KV Transmission Line 161KV Transmission Line 161KV Transmission Line Submarine cable Talwari Power Compo

Dept. EE, National Central University

Overview of Taipower's System



Taipower's Roadmap on Smart Grid

PE: Power Electronics PMT: Preventive Maintenance Technology Supporting platforms: Communication Protocol Guideline and Knowledge Base Dept. EE, National Central University

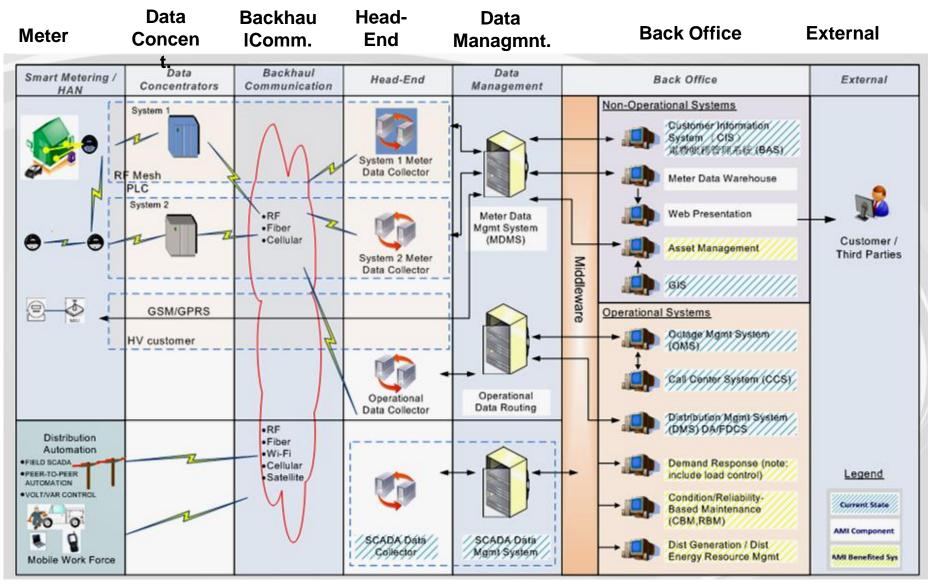
Taipower's Vision on Smart Grid

Smart Grid for Transmission System

- Asset Management: Main Transformer Asset Management constructed in 2008; the risk assessment of power supply stability and safety finished in 2009.
- Automated Asset Condition Assessment: RFIDs are applied for equipment, remote reading and analysis software developed in 2009.
- Automated Fault Location: Software has been developed in 2009
- SVR: Feasibility study: 2006, Construction Plan: 2011-2015
- SVC: Feasibility study: 2008, Construction Plan: 2012/2013 (in East Taiwan)
- **STATCOM** : Construction Plan: 2013 (LungTan, 150MVA)
- Enable Wide Area Monitoring & Control: PMUs have been installed in 2005, and several advanced features are under development.
- Integrate Demand Responsive Resources: The first stage program was operated in 2008, and will be promoted with sufficient incentives.

Distribution Feeder Automation

- Finished 53% of feeders with FDIR (Fault Detection, Isolation and Service Restoration)
- function in year 2012
- Increase the number from 2,110 to 6,256 feeders
- Main stream is the open loop type


High-Voltage AMI Timeline

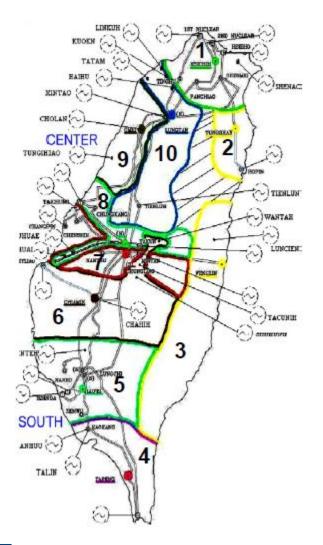
High voltage AMI total 23300 meters covering 59% electrical power consumption of Taipower will be installed before 2012.

Low-Voltage AMI Timeline

	1'st Stage (Tech. test)		2'nd Stage (Preliminary Installation)		3'rd Stage (Fundamental Installation)			4'th Stage (Extended Installation)		
Year	200 9	2010	2011 20		012	2013	2014	20)15	2016 ->
Meter No.	50	300~500	10,000			1,000,000				5,000,000
Working Items	Communication Technology Testing	*Define Function and Standard *Test Platform Plan	*MDMS Meter Function Test *Meter Function Std. ID. *Construct Test Platform *Construct New TOU Fee		Technology Confirmation	*New TO Executi *Load N and Der	on Ianagemer		Cost/Benefit Assessment	*Construct Distribution Automation System *Apply Load Management and Demand Response

Overall AMI Architecture

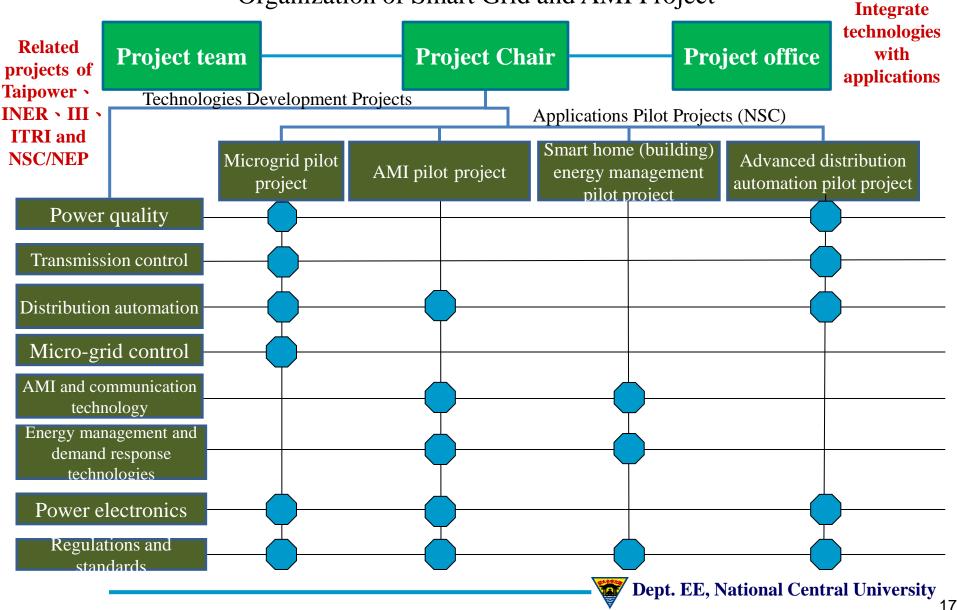
Dept. EE, National Central University

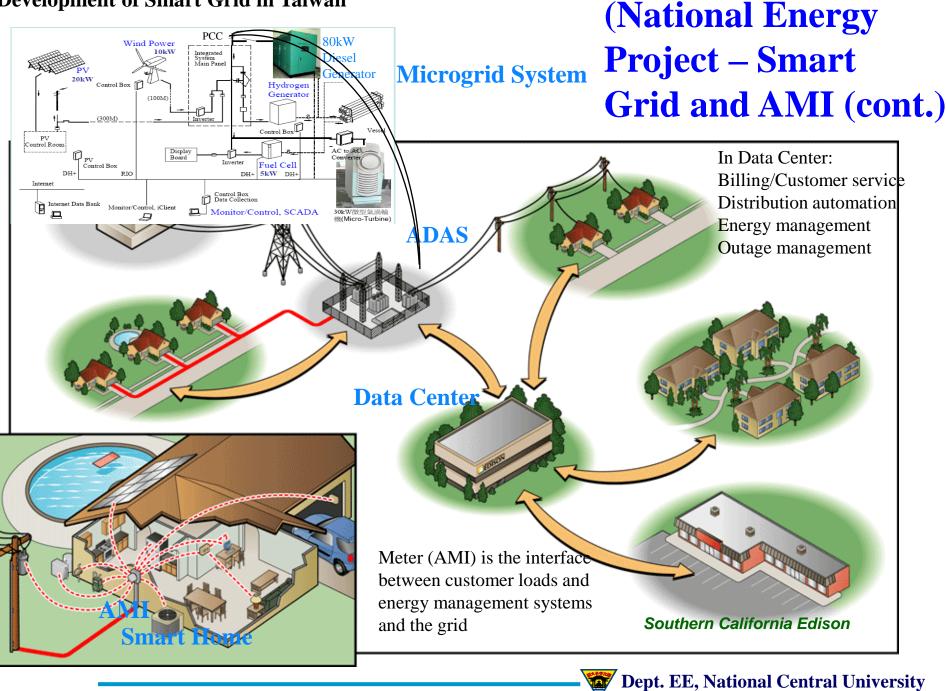

Objectives of Taipower's Smart Grid Action Plan (preliminary)

Benefit	Objective	2010	2020	Remark
Security & Reliability in power Grid	System average interruption duration index (SAIDI)	22min/ customer • year	17.6min/ customer • year	1 20%
Energy efficiency	Efficiency in thermal plants	42.52%	43.58%	1 2.5%
Renewable	Percentage of installed capacities	4.7%	15%	
Energy conservation & Carbon reduction	Green gas emission	81 million tons	80 million tons (reduce to meet the standard in 2005)	

Extension the Renewable and its Penetration Capability

- Renewable in Taipower focus on PV and Wind
- Divide Taipower's grid to 10 Renewable Deployment Regions (RDR) for Renewable expansion purpose.
- Investment evaluation of each project on RDR basis
 - Investigate Potential Renewable resources of each RDR
 - Examine Effective Load Carrying Capability
 - Carry out Cost/Benefit analysis of each investment
 - Example: Implement Submarine cable between Taiwan and the Poun-Hu archipelago wind farm

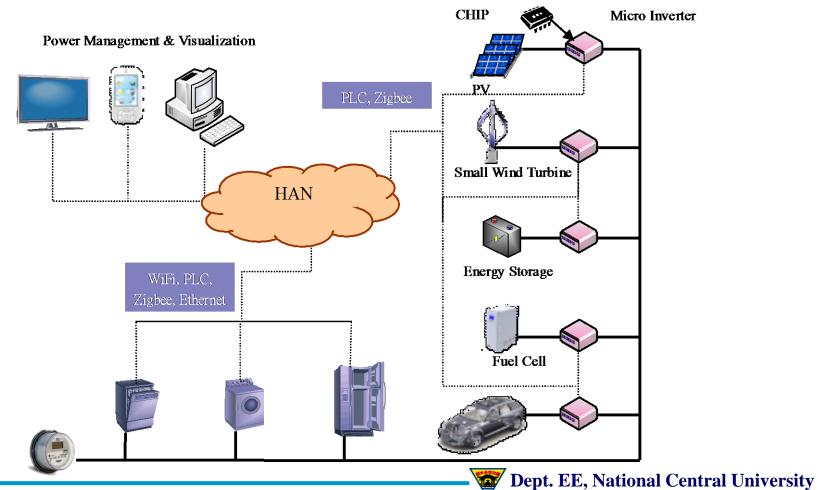

Dept. EE, National Central University


National Energy Project – Smart Grid and AMI, NSC

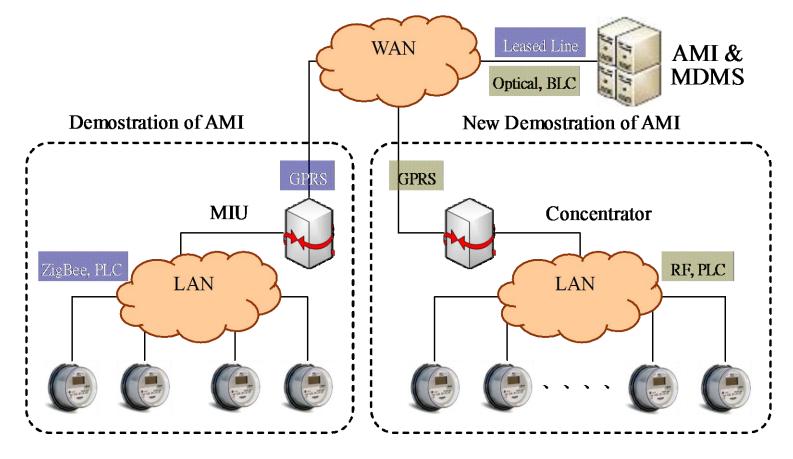
Vision	Develop the smart grid and AMI industry in Taiwan to establish high quality, high efficiency, user-oriented and environment- friendly power system to reduce CO2 emission, increase energy efficiency and enhance energy security.
Strategy	Tying in closely with the smart grid developing schedule of Taiwan Power Company, integrate the research abilities of industry and academia to establish smart grid and support the power facilities industry in Taiwan.
Manner	Promote AMI, microgrid, smart home (building) energy management system, advanced distribution automation four pilot projects by NSC to develop key technologies of smart grid and AMI and ensure the merging of the developed technologies into the power system in Taiwan will be reliable and feasible.

National Energy Project – Smart Grid and AMI (cont.)

Organization of Smart Grid and AMI Project

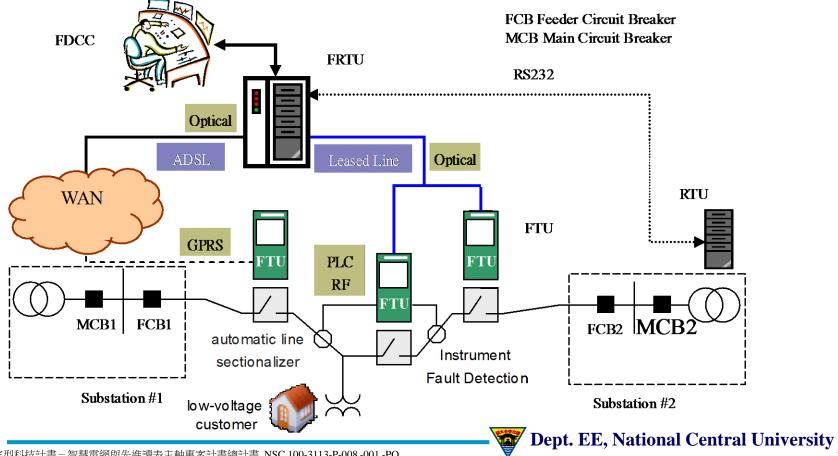


Research Budget of National Energy Project – Smart Grid and AMI, National Science Council				
Year	Budget (thousand, NTD)			
2010	126,140.00			
2011	313,316.41			
2012	349,028.41			
2013	349,028.41			
2014				


Development of Smart Grid in Taiwan Smart Home and Building Energy Management System

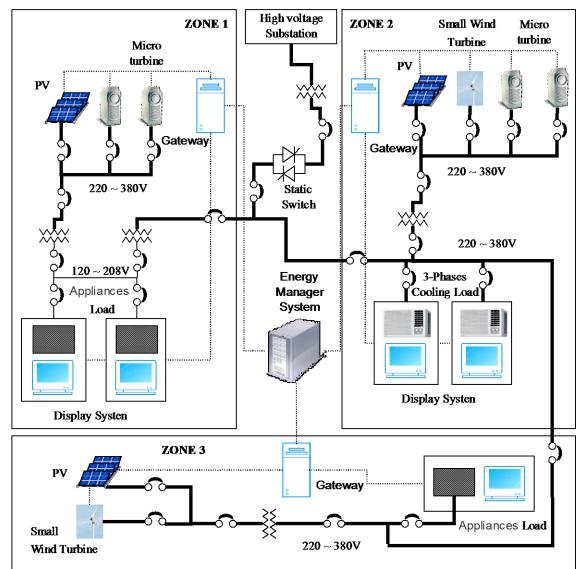
Equipment associated with smart home energy system includes intelligent home appliances, chargers for electric vehicles, power management chips, energy management system, home gateway, human-machine interface control, load type of control interface, wireless sensors, wired sensors, and communications module.

AMI System Structure


- AMI includes the smart meter, network of communication and meter of control center.
- Smart meter is composed by meter and Concentrator or Meter Interface Unit.

Distribution Automation System

 Distribution Automation System includes Feeder Dispatch and Control Center (FDCC), Feeder Remote Terminal Unit (FRTU), Feeder Terminal Unit (FTU).
 FRTU is the concentrator in Substation.

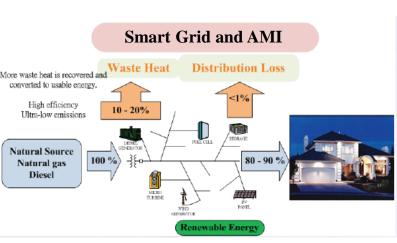

Distribution Automation System has the function of monitoring, control, SCADA and FDIR (Fault, Detection, Isolation and Restoration).

The general idea of Microgrid is to integrate a series of power loads with micro sources. The integrated system so called Microgrid is controllable and would provide users with high quality electric power with high penetration rate of DGs.

 The concept of Multi-Microgrid is that arbitrary Microgrid could be integrated or separated and become a new grid. This concept could support the development of Cellular Smart Gird.

Microgrid System


資料來源:紀國鐘,國科會產學合作計畫-微電網技術規範及產業發展研究計畫(1/2) NSC 100-3113-E-009-003-CC2


Objectives of Smart Grid and AMI Project

- 1. Use the developed technologies of distribution automation and microgrid to enhance the total installed capacity of renewable energy and ensure the total renewable energy generated electricity increasing to 10% of the total electricity supply to reduce 20 million tons of carbon dioxide emissions in 2025.
- 2. Promote smart home (building) energy management technology to increase 20% energy usage efficiency in 2015 compared to 2005.
- 3. Implementing the developed key technologies of smart grid and AMI, the install capacity of distributed generations will be 17.8GW and create 120 billions NT and more than 20,000 jobs per year from 2010 to 2025. There are about 60 billions NT market in Smart Grid and more than 10,000 jobs every year.

Development of Smart Grid in Taiwan The Past and The Future of Power System

The past

- Centralized power plant
- Low proportion of DG
- Few islanding operation
- From generation, transmission, distribution
- to user: overall energy efficiency 30~40%

Smart Grid and AMI Technologies Development

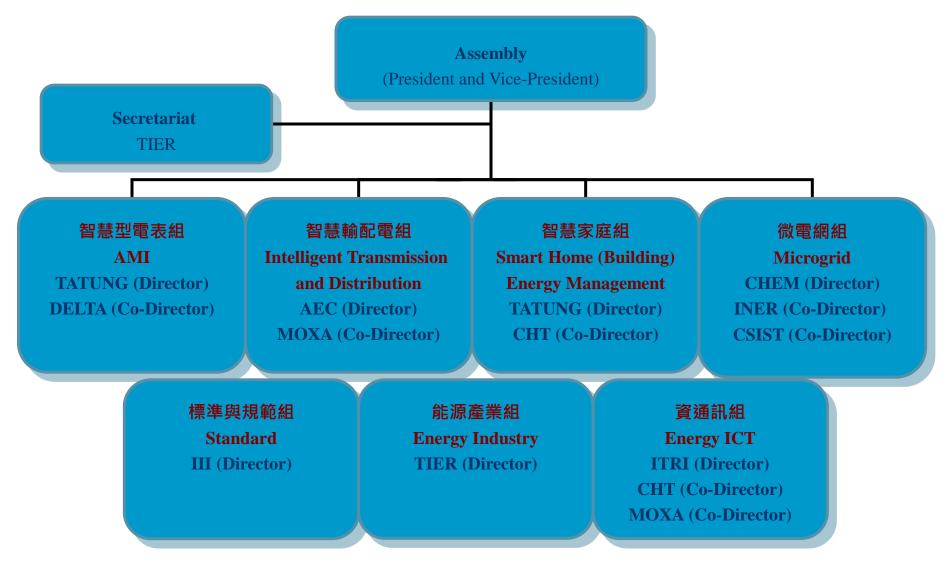
- Power quality
- Transmission control
- Distribution automation
- Micro-grid control
- AMI and communication technology
- Energy management and demand response technology
- Power electronics
- Regulations and standards

The future

- High proportion of DG (including renewable energy)
- Using microgrid and ADAS technologies, distributed network can be connected to the grid or operated in islanding
- Using AMI with demand response (DR), time of usage (TOU) strategies, saving and generating electricity become a concern of public
- Significant improvement of overall efficiency due to regional power sources supply local loads

Smart Grid and AMI <u>Pilot Projects</u>

- Microgrid pilot projects
- AMI pilot project
- Smart home (building) energy management pilot project
- Advanced distribution automation system (ADAS) pilot project


Taiwan Smart Grid Industry Association (TSGIA)

Object

- To coordinate the development of power system, power electronics and ICT to develop the smart grid industry in Taiwan.
- Mission
 - □ Build up design and integration capabilities of smart grid.
 - Estabilish a platform for integration and exchanging smart grid technology.
 - Bridge the industry to the government to create an industryfriendly society and policy structure encouraging the development of smart grid industry.
 - Assist Taiwan smart grid industry to reinforce the opportunities of international market shares.

Structure of TSGIA

ALLIS ELECTRIC CO (AEC), Chung-Hsin Electric and Machinery Manufacturing Corp. (CHEM), Institute for Information industry (III), Industrial Technology Research Institute (ITRI), Institute of Nuclear Energy Research (INER), CHUNG-SHAN INSTITUTE OF SCIENCE & TECHNOLOGY (CSIST), Chunghwa Telecom(CHT)

Taiwan AMI Components Provider

The high voltage AMI System of Taiwan Power Company is constructed by Tatung (with Institute for Information Industry). MIU is provided by Tatung and CHEM
 The scale of low voltage AMI is about 6 million smart meters.

Component	Provider in Taiwan			
Smart Meter	TATUNG, CHEM, SHIHLIN(Arch), DELTA, AcBel, Itron, Danielgroup, Schneider Taiwan			
Communications Module	AcBel, DELTA Networks, Billion Electric, TATUNG , Arch, MOXA, SensingTEK, Itron, ITRI			
Concentrator or MIU	MOXA, AcBel, DELTA Networks, ZyXEL, Itron, ITRI			
AMI Sytem	III, TATUNG, DELTA, Chunghwa Telecom, Ladis+Gyr \ Itron, Altos , ITRI			
Meter Data Management System(MDMS)	TATUNG , III,Chunghwa Telecom, eMeter, Oracle, Ladis+Gyr, Itron, Altos			

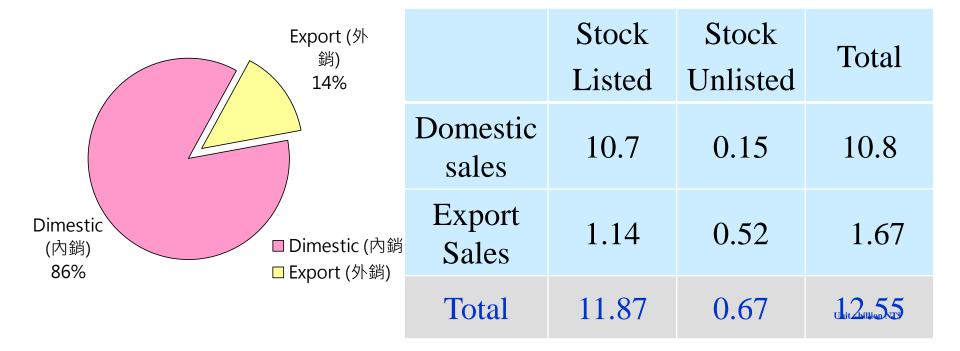
Taiwan DAS Equipments Provider

Sort	Equipment	Provider
Power	Transformer Oil Gas	CHEM, Fortune, SHIHLIN,
Distributi	Analyzer	TATUNG, PIC(G.E)
on	Pad- & Pole-Mounted	TATUNG, SHIHLIN, Fortune, ALLIS
Equipmen	Transformers	
t)	Recloser	Fortune, SHIHLIN
	Automatic Line Switches	CHEM, Fortune, ALLIS, SHIHLIN,
		TECO, TATUNG, Schneider Taiwan
Distributi	RTU, FRTU, FTU	CHEM, Connet, HCE, TATUNG
on Feeder	SCADA System	CHEM, Connet, HCE, TATUNG,
Automati		Chunghwa Telecom, Siemens 、 ACS 、
on System		SNC
	SCADA Server	ADVANTECH, HP
	GPRS/Fiber MODEM	Korenix, MOXA, EDIMAX
	Switch, Router	Connet, Wallnet, TATUNG, MOXA,
		Cisco, Altran

Taiwan Smart Home and Building Equipment Provider

Equipment	Provider
Intelligent home appliances	EHome : Cheng Xiang Control4 EMS : Justyle, ITRI
Electric vehicles charger	DELTA, ALLIS, LITEON, Fortune, Schneider Taiwan, ITRI
Power management chips	VIA
Energy management system (Interface)	Panasonic Taiwan, Chunghwa Telecom, INTEC, Tung-Chou, ITRI, Schneider Taiwan
Home Gateway	Panasonic Taiwan, Micortime Chunghwa Telecom, ITRI, Schneider Taiwan
Human-machine interface control	Panasonic Taiwan, Chunghwa Telecom, ITRI, Schneider Taiwan
Load type of control interface	Netvox, JosephTech
Wireless sensors	ZigBee : ICP DAS, Netvox
Wired sensors	Hom-thai, Winling
Communications Module	PLC : AcBel, Billion, ITRI ZigBee : ICP DAS, Netvox , ITRI Wi-Fi , Ethernet :MOXA

Taiwan Microgrid and DG Equipment Provider


Equipment	Provider
DG – Stationary fuel cell	CHEM, ITRI
DG - PV	Unienergy, HELIUS, ALLIS, Lucky Power, JosephTech, MOTECH, GPI, DELTA, ITRI, TATUNG
DG – Small wind turbine	Hi-VAWT, PGC, Boltun, iWIND, STU, ITRI, TATUNG
DG – Micro turbine	AIDC
DG – Energy saving system	FEMTC, AcBel, ALLIS, Lucky Power, ITRI, CSISTDUP
Electric vehicle quick charger	ALLIS, DELTA, LITEON, Fortune, Schneider Taiwan, ITRI
Bi-directional dc-dc converter	CHEM, DELTA, Ablerex, MOTECH , INER, ITRI, TATUNG
Micro Inverter	ALLIS, DELTA, Fortune, CHEM, Jubilee, Top Tower, GEOPROTEK, Schneider Taiwan, ITRI, TATUNG
Maximum Power Point Tracker	DELTA, INER, ITRI
Local SCADA	ALLIS, ADX, 榮成興業, CHEM, Chunghwa Telecom, ITRI, TATUNG
LVRT (AVR)	МОТЕСН
Distribution SVC	DELTA, TAIK
Distribution STATCOM	DELTA
AVR	DELTA , CHEM
Power controller / conditioner	INER
Loop Balance Controller (LBC)	NA
Static switch	榮成興業
Protective Relay	ALLIS, TAIK, Schneider Taiwan
Communication Equipment	MOXA Dept. FF. National Central Universit

A

資料來源:紀國鐘,國科會產學合作計畫-微電網技術規範及產業發展研究計畫(1/2)NSC 100-3113-E-009-003-CC2

Taiwan's Smart Grid Product Sales Amount

In 2010, Taiwan Smart Grid Product domestic sales amount is NT\$ 10.87 Billion (86%) and export sales amount NT\$ 1.73 Billion (14%). Taiwan's Smart Grid Products rely on domestic market.

資料來源:紀國鐘,國科會產學合作計畫-微電網技術規範及產業發展研究計畫(1/2) NSC 100-3113-E-009-003 -CC2

資料來源:台灣智慧型電網產業協會整理

Thank You for Your Listening!

